The Anzellotti–Gauss–Green formula and least gradient functions in metric measure spaces
نویسندگان
چکیده
In the framework of first-order differential structure introduced by Gigli, we obtain a Gauss–Green formula on regular bounded open sets in doubling metric measure spaces supporting weak Poincaré inequality, valid for BV functions and vector fields with integrable divergence. Then, study least gradient provide an Euler–Lagrange-type formulation problem, using this as main tool.
منابع مشابه
Functions on Localized BMO Spaces over Doubling Metric Measure Spaces
Let X be a doubling metric measure space. In this paper, the authors introduce the notions of Property (M̃) and Property (P ) of X , prove that Property (M̃) implies Property (P ) and give some equivalent characterizations of Property (M̃) and Property (P ). If X has Property (P ), the authors then establish the boundedness of the Lusin-area function, which is defined via kernels modeled on the se...
متن کاملSobolev and Bounded Variation Functions on Metric Measure Spaces
Contents Chapter 1. Introduction 1 1. History 1 2. Motivations 3 3. Examples of metric measure spaces 4 Chapter 2. H-Sobolev space and first tools of differential calculus 9 1. Relaxed slope and Cheeger energy 9 2. Elements of differential calculus 11 3. Reminders of convex analysis 14 4. Laplacian and integration by parts formula 15 5. Heat flow in (X, d, m) 16 Chapter 3. The Lagrangian (Beppo...
متن کاملMarked Metric Measure Spaces
A marked metric measure space (mmm-space) is a triple (X , r,μ), where (X , r) is a complete and separable metric space and μ is a probability measure on X × I for some Polish space I of possible marks. We study the space of all (equivalence classes of) marked metric measure spaces for some fixed I . It arises as a state space in the construction of Markov processes which take values in random ...
متن کاملDIFFERENTIABILITY OF p-HARMONIC FUNCTIONS ON METRIC MEASURE SPACES
We study p-harmonic functions on metric measure spaces, which are formulated as minimizers to certain energy functionals. For spaces supporting a p-Poincaré inequality, we show that such functions satisfy an infinitesmal Lipschitz condition almost everywhere. This result is essentially sharp, since there are examples of metric spaces and p-harmonic functions that fail to be locally Lipschitz co...
متن کاملContractive gauge functions in strongly orthogonal metric spaces
Existence of fixed point in orthogonal metric spaces has been initiated recently by Eshaghi and et al. [On orthogonal sets and Banach fixed Point theorem, Fixed Point Theory, in press]. In this paper, we introduce the notion of the strongly orthogonal sets and prove a genuine generalization of Banach' fixed point theorem and Walter's theorem. Also, we give an example showing that our main theor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Contemporary Mathematics
سال: 2023
ISSN: ['0219-1997', '1793-6683']
DOI: https://doi.org/10.1142/s021919972350027x